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Bifurcation in gravity waves 

By M. S. LONGUET-HIGGINS 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge, England, and Institute of Oceanographic Sciences, Wormley, 

Godalming, Surrey 

(Received 28 June 1984) 

A new method is proposed for the calculation of gravity waves on deep water. This 
is based on some recently discovered quadratic identities between the Fourier 
coefficients a, in Stokes’s expansion. The identities are shown to be derivable from 
a cubic potential function, which in turn is related to the Lagrangian of the motion. 
A criterion for the bifurcation of uniform waves into a series of steady waves of 
non-uniform amplitude is expressed by the vanishing of a particular determinant with 
elements which are linear combinations of the coefficients a,. The critical value of 
the wave steepness for the symmetrk bifurcations discovered by Chen & Saffman 
(1980) are verified. It is shown that a truncated scheme consisting of only the 
coefficients a,, a, and a* already exhibits Class 2 bifurcation, and similarly for 
Class 3. Asymmetric bifurcations are also discussed. A recent suggestion by Tanaka 
(1983) that gravity waves exhibit a Class 1 bifurcation at the point of maximum 
energy is shown to be incorrect. 

1. Introduction 
In  an interesting paper, Chen & Saffman (1980) provided convincing numerical 

evidence that steady, irrotational waves in water of infinite depth are not unique. 
At  a certain wave steepness the regular system of waves, of uniform amplitude, were 
shown to bifurcate into other series of steady waves of non-uniform amplitude. For 
example, in waves of Class 2, every second wave can be higher than the rest. In  class 
n waves, the overall horizontal periodicity is n wavelengths of the uniform waves. 
Chen & Saffman also found that there were no Class 1 bifurcations, that is to say 
there were no steady waves having the same overall periodicity as the original series, 
but of a different surface profile. 

However, Tanaka (1983) has suggested that Chen & Saffman’s conclusions 
regarding the absence of a Class 1 bifurcation may not be correct. Tanaka had 
calculated the normal modes of instability of regular waves and found numerically 
that the frequency u of the perturbation (in a frame of reference travelling with the 
unperturbed wave) vanished at a point very close to the steepness ak for which the 
energy density E was a maximum. (This occurs at a steepness ak less than 
Tanaka suggested that the vanishing of u implied a Class 1 bifurcation at that point, 
in conflict with Chen & Saffman’s findings. 

Now Chen & Saffman’s method of calculation was by an integral equation involving 
the surface displacement, and this does not easily reveal the physical reasons for their 
remarkable findings. The purpose of the present paper is to look at the problem from 
a simpler point of view, namely the Fourier expansions employed originally by Stokes 
(1880). The idea is to exploit some simple, quadratic relations between the 
coefficients a, in Stokes’ expansion, which were found recently by the present author 
(Longuet-Higgins 1978). 
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As a first step we show, in $2, that these quadratic relations are all derivable from 
a potential function F which is cubic polynomial in the coefficients a,. Not 
surprisingly, the function F can be shown ($3) to be closely related to the Lagrangian 
L of the wave motion (where L is the kinetic energy density minus the potential energy 
density). More usefully, the quadratic relations lead to a very simple scheme for the 
determination of the Fourier coefficients in terms of either the first coefficient a,, or 
of any other convenient parameter ,u along the branch of the solution curve, as 
described in $5. By this method one can determine the coefficients quickly and 
economically, up to a wave height within 1 percent of the maximum. This is without 
the use of Pad6 approximants or other methods for accelerating the convergence. 

The analysis also yields a straightforward criterion for bifurcation of types 2 and 
3 (and generally n) in terms of the Fourier coefficients a,, and it is verified that Chen 
& Saffman’s calculations of the critical wave steepness for Class 2 and Class 3 
bifurcations are accurate to four decimal places. 

A further advantage of the analysis is that by truncating the number of harmonics 
at only 2 or 3, a simplified model is obtained which itself exhibits the essential 
property of bifurcation (see $$6 and 7) .  The approach via Fourier coefficients is 
therefore both revealing and robust. 

In $8 the analysis is extended to include asymmetric solutions, and criteria are 
given for this more general type of bifurcation, in terms of the ai. By applying these 
criteria it is shown that if a Class 1 bifurcation takes place a t  the energy maximum 
E = Emax, then it can only take the form of a pure phase shift. This supports Chen 
& Saffman’s calculations, and throws doubt on the validity of Tanaka’s conclusion. 

2. Symmetric waves: Fourier coefficients 
Consider a steady, progressive, irrotational wave travelling horizontally with speed 

c relative to deep water. Let us choose axes OX, 0 Y moving with the wave, with 0 Y 
vertically upwards and the origin 0 chosen so the mean surface level is Y = -c2/2g. 
We assume that the motion is periodic in the X-direction with period 2x ,  the 
wavelength being a submultiple of 2n. If @ denotes the velocity potential, then 
after Stokes (1880) we may express the coordinates (X, Y) in the form 

in which, for symmetric waves, the coefficients a, are all real. 
As shown elsewhere (Longuet-Higgins 1978, 1 9 8 4 ~ )  the condition that the 

pressure be constant at  the free surface (Y = 0) is equivalent to the set of relations 

(n  = 1,2, ...) 
Y e-ifl@le (dX+idY) = 

and this is immediately seen to give rise to the relations 

1 
a0+a1a1+2a,a,+3a,a,+ ... = -c2, 

a1+a,a1+2a1a,+3a,a3+ ... = 0, 

a,+a1a1+2a0a,+3a,a3+ ... = 0, 

a,+a,a,+2a1a,+3a,a,+ ... = 0. 

(2.3) 

between the coefficients a, and the wave-speed 8. It will be noticed that these are 
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quadratic at most, in comparison with the usual cubic system which follows from a 
direct application of Bernoulli’s equation at the free surface. 

Moreover it may be verified that (2.3) can also be expressed compactly in the form 

where 

and we have written 

Also 

- = O ,  n = 0 , 1 , 2  ,..., aF 

a% 
F = ( a + J + a , K ) + ~ ( a , + ~ ~ ) ~ ,  

01 = a ,  (a,a2+a2a3+a3a4+ ...) 

+ 2a,(a, a3 +a2 a4 +a3 a5 + . . .) 
+ 3u3(u1 a4 + a2 a5 + a3 UB + . . .) 
+... . 
J = i(a?+a:+ai+ ...), 

K =  f(a;+2a:+3a;+...). 

That is to say, for any given value of c2 the possible values of a,, a,, a2, . . . are those 
that correspond to stationary values of the function F(a,, a,, a,, . . .). This gives rise 
to many useful properties of the system (2.3), and to a convenient method of 
computation, as shown below. 

We note that the first of equations (2.3) may be written in the form 

ao+2K = -c2. (2.9) 

Hence we have also 
aF - = i ( U , + C 2 )  = - K .  
ac2 

(2.10) 

3. F related to the Lagrangian L 

Lagrangian density L defined as 
Some previously known relations will enable us to relate the function F to the 

L = T - V ,  (3.1) 

where T and V denote respectively the kinetic, and potential, energy densities. For 
it has been shown (Longuet-Higgins 1975) that for gravity waves in water of uniform 
depth 

where I is the momentum density, and also that 

dL = Idc, (3.2) 

I = cK, (3.3) 

where K is defined by (2.8) (see Longuet-Higgins 1 9 8 4 ~ ) .  Hence 

2 dL = K dC2. (3.4) 

On the other hand from (2.4) and (2.10) it  follows that 

(3.5) 

Hence dF = -2dL. (3.6) 
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But when a, = 0, n 2 1, then J, K, F and L all vanish together, hence on integrating 
(3.6) we have 

(3.7) 

(3.8) 

F = -2L. 

A more direct proof can be given as follows. In  Longuet-Higgins (1984~)  it is shown 
that equations (2.3) imply 

3a+2(J+aOK) = 0. 

So from (2.5), (2.9) and (3.8) 
F = $(J+a ,K)+P,  

and on substituting for a, from (2.9) we have 

3F = J-c2K+h?. 

This compares with the expression 

6L = - J + c 2 K - P  

found in $6 of Longuet-Higgins (1984~) .  

(3.9) 

(3.10) 

(3.11) 

4. Further differential relations 
Let the system (2.3) be written as 

F r = O ,  i = O , 1 , 2  ,..., (4.1) 

where Fi = aF/aar. If (a,, a,, a,, . . . ; c2) is any solution of these equations, then a 
neighbouring solution (a, + da,, a, + da,, . . . ; c2 + dc2) will satisfy 

dFi=O, i = O , 1 , 2  ,..., (4.2) 

that is (4.3) 

The system may be displayed in the form 

- dC2 

(a, +a,) (1 + a, + 2az) (2Ul-k 3a3) 
(2a, + 2a,) (2a, + 3 4  (1  + 2a, + 4a4) (3a, + 5a,) 

(3a3 + 3a3) (3U, + 4U4) (3U, -k 5U5) (1  + 3 ~ ,  + 6 ~ , )  . . . 

(4.4) 
The symmetry of the matrix on the left is guaranteed by the relations 

aF. a2F L- -- auI auraaI- (4.5) 

On multiplying the first of equations (4.4) by a,, the second by a,, the third by 
a,, etc. and adding, making use of (2.9), we obtain 

dJ+a, dK = 2K da,. (4.6) 

For the reasons mentioned in Q 1, we are interested in the particular points at which 
the phase speed is stationary with respect to increments in the other parameters, that 
is 

dc=O; d L = 0 .  (4.7) 



A 

46 1 

(1 + 1 )  (a, +a,)  (2a, + 2a,) (3a, + 3a,) . . . 
(a,+al) (1+a0+2a2) (2a1+3aa) (3a2+h4) ... 

(2a, + 2a2) 3a3) (1  + 2Uo +&4) (k1+ k,) . . . 
(3a,+3~,) ( k , + & 4 )  (3a1+5a6) (1+3ao+6a6) ... 

(4.9) 

(4.10) 

(a, + 3K) (2a0 + 4K) 0 0 ... 
1 (1 + 1) (a, +a,) (2a, + 2a,) . . . 
0 (al+al) (1+a0+2a,) (2a1+3a,) ... 
0 (2a2+2a,) (2a1+3a,) (1+2a,+4a4) ... 

(4.11) 
simultaneously. A criterion can be stated in terms of the Fourier coefficients 

d(c'K2) = d(P)  = 21dZ = 0. (4.12) a,, a,, a,, .. . . For then 

Hence Kdc2 = - 2 ~ ~ d K = - ( a , + 2 K ) d ( a , + ~ ~ ) ,  (4.13) 

= 0. (4.15) 

that is (a, + 3K) dC2 + (a, + 2K) da, =-0. 
From (4.4) this implies that 

(1+a0+2a,) (2a1+3a,) (3a,+4a4) ... 
(2a,+3a,) (1+2ao+&4) (3a1+&) ... A' G 
(3a,+&,) (3a1+&) (1+3aO+&,) ... 

(4.14) 

(4.17) ' 

5. Calculation of the coefficients 
Equations (2.3) provide a simple means of calculating the coefficients a,. Since the 

h t  equation is the only one involving the phase speed c, we may leave this until 
last, and work with the remaining equations. We have then to solve 

O'I 
Fl al+a,a. ,+2a1a,+3a,a,+... = 

F, a,+ala,+2~,a,+3ala,+... = 0, 

Fa = aa+a,al+2ala,+3a,aa+ ... = 0, 
..., 
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as a function of some parameter p taken along the curve. At first it is possible to 
take p = a,. Then (5.1) are to be solved for a,, a2, ..., given the value of a,. 

We note that (5.1) may be expressed as 

- 0, i = 1,2,  ..., 
aG _ -  
a% 

where G is the reduced potential 

G = a+ J+a, K ,  (5.3) 

in which the terms in c2 and a, alone have been omitted (cf. 2.5). 
Suppose that we are given, or can guess, an approximation (a?), up), ...) to the 

solution for a certain value of a,. For example this might be the exact solution a t  
a neighbouring point on the solution curve. Then to find a closer approximation we 
may (in general) calculate the corresponding values Fa1) of Fd for each i, and solve 
the equations 

for the increments &a,, as in Newton's method. It is convenient to display this system 
in the form 

(1 -kU0+2U,)  (2al+3a3) (3U2+4a4) ... - F(1) 

. (5.5) 
(1+2ao+&& (3%+5%) ---) (+)=( - -:) Ey3" 

(3a2++) (3a,+5a5) (1+3a0+6a,) ... 

which also involves a symmetric matrix. 
The method has the advantage that all the elements of the matrix are simple, linear 

combinations of the Fourier coefficients, and so easy to handle. No use is made of 
arbitrary power series expansions for each coefficient. 

Figure 1 shows the values of the phase-speed, calculated in this way plotted (+) 
as a function of the wave steepness 

ak = al+a3+a5+ ... (5.6) 

for Class 1 waves, that is to say those in which the first harmonic a, is dominant, 
so we may take the wavenumber k equal to 1.  The total number N of harmonics did 
not exceed 320 (and generally was much less), and the convergence was not artificially 
accelerated. The method takes the calculation well past the steepness corresponding 
to the first energy maximum (ak = 0.4292) but not quite up to the first maximum 
of the phase speed (ak = 0.4359). 

Evidently the method will fail if the parameter ,u (in this case a,) is locally 
stationary. This is characterized by the vanishing of the determinant A' of the matrix 
(5.5). In figure 2 we have plotted the ratio A'/A",  where A" is the principal minor 
of A', and it can be seen that this goes to zero a t  about the point ak = 0.434, 
intermediate between the maxima of E and c. When plotted against ak in figure 3, 
it  can be seen that -a, is approaching a maximum a t  this point. We may recall the 
maxima in the other coefficients a,, a2, . . . as shown in figure 3 of Schwartz (1974). 

This general difficulty may be overcome by choosing a parameter p that behaves 
monotonically throughout the complete range of wave steepness. Several such 
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amax 

xc 

I )  I I 
0 0.41 0.42 

ak 

I 
D.43 
I 

0.44 

FIQURE 1. Graph of ca against ak for regular waves of Class 1, at the high values of the wave 
steepness. 0 Pad6 approximanta (Longuet-Higgins 1975); + present paper, equations (5.5); x 
present paper, equations (5.10). 

ak 

FIQURE 2. The ratio A'/A" for the matrix of (5.5). 

parametkrs have been employed by various authors. One is the crest-to-trough 
waveheight 2a, which was introduced by Schwartz (1974), but this has an upper limit 
which is not known a priori. Longuet-Higgins (1975) and Cokelet (1977) used 
parameters which ranged monotonically from 0 to 1. Others have been introduced 
by Chen & Saffman (1980) and by Tanaka (1983). 
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1.32 

1.30 

- 0 0  

I .2a 

1.26 

1.24 

ak 

FIQURE 3. Graph of the lowest coefficient a, as a function of ak. 

The simplest parameter, however, would seem to be 

which for limiting waves tends to the known value 1, and which is expressed very 
simply and naturally in terms of the Fourier coefficients. For, by Bernoulli’s theorem, 

Q = 1 + Y(0)  = 1 + ~ o + u l + u 2 +  ...) (5-8) 

and it follows that dQ = fl~,+da,+da,+ ... . (5.9) 

For a given value of Q, the equations to be employed in the successive approximation 
procedure are now 

Some points computed by this method are shown by the crosses ( x ) in figure 1, and 
it will be seen that the method now takes the computation well past the point of 
maximum phase-speed and onto the descending part of the curve. As before, we took 
N = 320 and no Pad6 approximants were used. 
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1 I 1 I I I 
0.427 0.428 0.429 0.430 

ak 

FIGURE 4. The ratio DID’ in equation (5.11), verifying the position 
of the energy maximum Ern=. 

In  addition we made a numerical check of the condition derived in 94 for a 
stationary value of E. Now (4.16) may be written 

A 2a0+4K 4c2 
A’ a, + 3K 3c2 +a,  
_ -  - =- (5.11) 

In  figure 4 we have plotted both the left- and right-hand sides of (5.1 1) as a function 
of ak. It will be seen that they do indeed intersect in the neighbourhood of ak = 0.429, 
the value of ak for which E = Em,, (see Longuet-Higgins 1975; Longuet-Higgins t 
Fox 1978). The value of ak determined as in figure 4 was in fact 0.42914, with an 
uncertainty of two digits in the fifth decimal place. 

6. Symmetric bifurcations: n = 2 

of waves is characterized by the relations 
In a wave of Class 2, where the second harmonic is dominant, the regular series 

i = 0 , 1 , 2  ,.... 1 %+1 = 0, 

a2i = 44 
where a; is the corresponding coefficient in waves of Class 1. In such a series we 
obviously have in general da,t+l = 0. 

At a point of bifurcation, however, we look for a branch on which 

dazt+, * 0. (6.2) 

At the bifurcation point itself, where both (6.1) and (6.2) are satisfied, (5.5) will be 
seen to split into two independent subsystems, for the even and the odd increments 
respectively. That for the odd increments daZi+, can be written 
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(3% 4a4 ) 
1 + 3a0 + 6U6) 

(5a, + 8u3) 

(5a2 + 8 ~ , )  
(1 + 5a0 + 10alo) . . . 

( 1 + & 0 + % )  (&1+2a,) (%a,+3a3) * * *  

(&1+2a2) (1+$0+3a3) (@4+4a4) ... 
(%2+3a3) ($a,+4a4) (1  + % 0 + 5 ~ , )  ... D G  

466 

i 

= 0. (6.5) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ... I 

We examined the condition (6.5) numerically, with a total number of harmonics 
N up to 320. I n  figure 5 are plotted some computed values of the ratio DID', where 
D' is the principal minor of D (i.e. the determinant obtained by omitting the first 
row and the first column). It will be seen that this ratio behaves smoothly, and 
changes sign a t  about ak = 0.405. A precise value is 

ak = 0.4049615 (6.6) 

corresponding to  a height-length ratio 2a/h = 0.128903. This agrees to four figures 
with the value given by Chen & Saffman (1980). 

n = 2  

0.4 - 

0.2 - 

1 

D 

0.4 I 1 1 1 I 
0.38 0.39 0.40 0.41 0.42 0.43 

ak 

FIQURE 5. Graph of DID' for equations (6.4). 

Clearly this will have a non-zero solution only if the determinant of the system 
vanishes. We may express this in terms of the coefficients a: of the corresponding 
Class 1 waves by making the substitution 

After suppressing the primes ' (this need cause no confusion), we find as a criterion 
for this type of bifurcation 
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The parameter b defined by Chen & Saffman (1980) is equivalent to 

b = 1-q2 crest/c2 7 (6.7) 

where qcrest denotes the particle speed at  the crest in the stationary frame of reference : 
qcrest = (aX/a@);i ,. In terms of the Fourier coefficients at we have 

b = 1 - ( ~ , + 2 ~ , + 3 ~ , +  ...)-2. (6.8) 

b, = 0.8797579, (6.9) 

This parameter was also computed and the critical value was found to be 

which differs from that given by Chen & Saffman only in the fifth decimal place. 
To throw some light on the reasons for the existence of this bifurcation, we may 

note that a similar bifurcation is to be found even in the drastically truncated system 
of equations in which only the coefficients a,, a, and a2 are retained. Then the 
potential function G of (5.3) reduces to 

G = at a2 +*(a; +at) + +z,(a: + 2 4 )  (6.10) 

1 -  

A 0.5 

\// - 1  a 

and (2.3) becomes a, + a, a, + 2a, a2 = 0, 

a2+a,a,+2a,a2 = 0, 

1+a,+2a2 = 0. 

a , --1 - 2, a, = 0, a2 = -a  

while the bifurcation condition (6.3) becomes simply 

So we have a bifurcation at 

(see figure 6), the wave steepness being 

ak = I 2a2 I = 0.5 

A 

- A’ 

a,=-I  

a h  1 ~ 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

FIQURE 6. Class 2 bifurcation seen in solutions to the truncated system (6.11) : 
AA and Oa,: uniform waves; BB’: non-uniform waves. 
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(cf. the exact value 0.405). For general values of a,, (6.11) and (6.12) have the 
parametric solution 

(6.15) 

Solutions with a, < - 1 (figure 6, curve AA’) correspond to regular waves; those with 
a, >, -+ (curve BB’) correspond to nonuniform waves. The solutions are restricted 
by the condition for limiting waves, which may be taken as 

*,fu,+a, = 0. (6.16) 

For each curve we find a, = - (3 + 1/5)/4 = - 1.3090. These points are marked on the 
corresponding curves in figure 6 by the letters a, a’; B, /3’. 

This analysis suggests that the Class 2 bifurcation is a simple consequence of the 
interaction between the fundamental wave and its 2nd subharmonic. 

It is interesting that figure 6 indicates that, on the curve BB‘ for irregular waves, 
the second harmonic a2 is always positive ; there is no analogous branch with u2 < 0. 
This implies that irregular waves can exist in which the crests are symmetric 
fore-and-aft and the troughs are asymmetric ; but not vice versa. 

Nevertheless it would seem worthwhile to explore the branch on which, in place 

a2< = x (-  l)i.  (6.17) of (6.4), we have 

1 a, = “,++)(.,+1)1:, 

a2 = -+(a,+ 1) .  

D2 

E m u  
L - .  -- 

(l++a,-a,) (-$a,+%,) (B2-3a3) ... 
(-$1+2a2) (1+$,-3~,) (-Ba,+4a4) ... 
(B2-33a3) (-$a,+4U4) (1 +$,-55a5) ... 

n 

I I I I I 
0.2 0.3 0.4 

ak 

FIGURE 7. The ratio D2/D; for the determinant (6.18). 

2 

1- 

(6.18) 
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Figure 7 shows the ratio Dz/Di  for this determinant, and it can be seen that it remains 
almost a constant over the range of interest. We may conclude that there are no 
trough-symmetric Class 2 bifurcations over this range. 

7. Symmetric bifurcations: n = 3 

are characterized by 
In a similar way, regular waves of Class 3, in which the third harmonic dominates, 

and if we seek another branch on which 

da3C+l, da36+2 * (7.2) 

then for the bifurcation point itself we get two independent systems of equations for 
the da8, of which one is 

Now 
that 

writing a,$ 

D =  

X (7.3) 

should vanish. Again we calculated D/D' where D(z) denotes the determinant 
obtained from D by omitting the first 1 rows and columns. Since, however, D' changed 
sign close to D it was found preferable to plot the ratio DID", which varied more 
smoothly (see figure 8). From the graph it will be seen that D/D" changes sign at 
nearly the same value as for Class 2 bifurcation, a precise value being 

ak = 0.40469 (7.5) 

equivalent to 2a/h = 0.12882. This again agrees with Chen & Saffman's value 
(0.1288). However, for the critical value of the parameter b we find 

b, = 0.87906, (7.6) 
differing from theirs in the fifth decimal place. 
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n = 3  

0.1 I I I 1 I 
0.38 0.39 0.40 0.41 0.42 

ak 

FIGURE 8. Graph of D/D” for the Class 3 bifurcation conditions (7.4). 

In  the truncated system ofequations, in which we set at = 0 for i > 3, we have 

G = a? a, + 3a, a, a3 + ;(a; + a: + a:) + @.,(a; + 2 4  + 3 4 )  (7.7) 
and in general we must solve 

a,(l+ao)+a,(2a,+3a3) = 0, 
a,( 1 + 2aJ + Ul(Ul + 3a3) = 0, 

a3( 1 + 3a0) + 3a, u, = 0. 

By eliminating first a, and then a3 we may obtain the parametric solutions 

I a2 = ~ [ ( l + 3 a o ) ~ { ( l + 3 a o )  (10+12Uo)}i], 

(1  +2ao) (1 +3a0) 
u; = 

f [( 1 + 3a0) (10 + 12ao)]f’ 

3% a2 
a3 = -~ 1 + 3a0 

(7.9) 

These are sketched in figure 9. To help visualize the curves in three dimensions, each 
branch is joined to its projection on the ‘horizontal’ plane u2 = 0. The branch AA’ 
represents the regular solutions; in these a, is always positive. The branch BB’ passes 
through the point P = (a,, a,, a3) = (0, 0,2/2/9). This implies a critical wave steepness 

ak = 13u3J = 2/2/3 = 0.471 ... . (7.10) 

Presumably this branch corresponds to the solutions traced by Chen & Saffman. A 
restriction on the validity of the solutions is imposed by the rough condition that 
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a2 

t 

47 1 

n = 3  

A' 

D 

I 
a3 

FIQURE 9. Class 3 bifurcation seen in solutions to the truncated system (7.6): AA' and Oa,: 
uniform waves, B B  and CC': non-uniform waves. 

Y < 0 at every point on the surface; otherwise, in the exact solution, q2 would have 
to be negative. This implies in particular that 

nx 2nn 
3 3 

&,+a, cos-+a2 cos-+a3 cosnx < 0, (7.11) 

where n = 0 , 1 , 2  and 3.  By this criterion, allowable solutions on the curves AA' and 
BB lie only between the marked crosses, a, a' and fl ,  F .  

By the same criterion, the two branches D D  and EE in figure 9 lie well outside 
the allowable range of parameters and presumably do not correspond to nontrivial 
solutions of the complete system of equations. 

There remains the branch CC'. This, however, simply represents the same set of 
solutions as BB, but with the signs of a, and a3 reversed (QC corresponds to PB, 
and QC' to PB'). This change implies a shift in phase of the previous solutions by 
x so that the point X = 0 now lies at a wave trough instead of at a crest. In this form, 
the curve CC' has a cusp at Q. 

It may be noted that the point C in figure 8 corresponds to the solution 

a, =a, = a2 = a 3 = -1 69 (7.12) 

which, together with a, = 0, i > 3, may be verified as a solution of the original 
equations (2.3). Generally, a solution of the truncated system, for any given n,  can 
be seen to be 2 ~ 

a, = a, = ... = a, = -~ 
n(n+ 1 )  ' 

(7.13) 

But clearly as n+oo this solution tends to the trivial solution in which all the at 
vanish. 
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8. Asymmetric bifurcations 
From $5 it is clear that a necessary condition for a symmetric bifurcation is that 

the determinant of (5.10) shall vanish. For regular waves of Class 1, we have seen that 
this condition appears not to be satisfied for regular waves of any steepness. We turn 
now to the question whether there could be any bifurcation of regular, Class 1 waves 
into asymmetric forms. 

For this problem we need to generalize the equation of $2 by allowing all the 
coefficients a, to be complex (except ao). Thus in (2.1) we may take 

a n  = pn + iqn, (8.1) 

where p, and qn are real and go = 0. It is convenient also to write 

b o = l ,  b,=a, ,  n = l , 2 , 3  ,.... (8.2) 

Equations (2.2) are still valid, but now the more general form of (2.3) is 

I ao+a:bl+a:b2+a,*b3+ ... = -c2, 

al+aobl+a:b2+a:b3+ ... = 0, 
a2+alb,+aob2+a:b3+ ... = 0, . 
~ , + ~ , b , + ~ , b , + a ~ b , + . . .  = 0, 
............................. 

Each of these equations, after the first, has both a real and imaginary component. 
Then the real and imaginary parts of (2.3) become respectively 

)+3(P1P3+q1q,)+.-- = o ,  9 (8*4) I PO+ (PlP1+91 Q1) +2(P2P2+q2 P2) + 3(P3P3+q3 43) + ... = -cz, 

Pl+(POPl +2(P1P2+q1 q2) + 3(P2P3 +Q!A Q3) + - * -  = O ,  
P2 + (Pl Pl -Q1 all +2(Po P2 

P3 + (P2 P1-Qz Ql) + 2(Pl P, -Q1 a 2 )  + 3(PoP3 )+ ... = 0, 

and 

We see that the differentials 

dq = (dql,dq2, ... ) 
will then satisfy 

dpT -dc2 (-;;-I-;-) (,.)=( ) (8.7) 
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and 

(8.10) 

( ~ + P O - ~ P Z )  (2Pi-3P3) (3P2-4Pd) - * -  

(2Pi-3P3) (1 + ~ P o - ~ P ~ )  (3Pi-sP5) * a .  

(3P2-4P4) (3Pi-5P5) 

It will be observed that the matrix R is similar to that of the principal minor of P, 
except that in each element the sign of one of the terms is reversed. 

To these equations must be added one for whatever parameter 
p = pu(po, p,, p2 . . . ; q,, . . .) is used along the branch in question, namely 

(8.11) 

For bifurcation points lying on the regular branch we may take 

P, =a,, q6 = 0, (8.12) 

and it can be seen that the submatrix 0 is null, and the system (8.6) breaks up into 
two independent sets of equations, one for determining the dp2, or their ratios, and 
the other for determining the dqi. That for determining the dq, can be written 

R x d g = O  (8.13) 
where now 

(8.14) 

(8.15) 

One would expect the full (8.7) to be satisfied identically by an asymmetric solution 
: )  

(1 + a, - 2 ~ ~ )  ( 2 ~ ,  - 3a3) (3a2 - 4a3) . . . 
(2al-3a3) ( 1 + 2 ~ , - 4 ~ ~ )  (3al-5a5) ... 
(3a2-44a4) (3a1-55a5) (1+3aO-b6) ... ' 

R =  ( 
corresponding to a pure phaseshift, that is to say 

dp, = nq, do, 

where de is a small phase angle. Thus (8.13) should be satisfied by 

dq, = -np, do, 

dqn=np,, n = 0 , 1 , 2  ,.... (8.16) 

This may be verified by direct substitution. One of (8.13) is therefore redundant, and 
i t  may be replaced by the condition that q, = 0 or 

dq, = 0. (8.17) 
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I I 
I I 
I I 
I I 
I I - I I 

I I 
I I 
I I 
I I 
I I 
I I 

I I 
I I 
I I 
I I 

- c p s J s 

- 

- 
n = 1 (asymmetric waves) I I 

- 

I I I I I 1  I I 

R'= 
(1+2a0-4u,) (3a,-55a3) ... 

( 3 ~ , - 5 ~ , )  (1+3u0-b6) ... = O .  (8.18) 

9. Discussion and conclusions 
By exploiting the quadratic identities (5.1) between the Fourier coefficients at, we 

have been able to  develop a method of calculation for Stokes waves of arbitrary 
steepness which avoids expansions in power series or the use of Pad6 approximants. 
We have shown that criteria for bifurcation and for other properties of the motion 
can be expressed in terms of the ai. Not only does this method confirm in a simple 
way the critical wave steepness for wave bifurcation determined by earlier authors, 
but by truncating the Fourier series at ,  say, i = 2 or 3 it  provides a simple model 
for understanding the existence of bifurcation points. I n  view of the relatively high 
wave steepnesses at which these phenomena occur, this was perhaps a surprise. 

We have shown also that the bifurcation which was claimed by Tanaka (1983) to 
exist near the point ak = 0.429 can be no more than a pure phase shift. The relation 
betwecen bifurcations and normal-mode instabilities a t  zero frequency is examined 
in a companion paper (Longuet-Higgins 19846). 

FIQURE 10. Graph of RIR" for the asymmetric bifurcation, given by (8.14). 

This replaces the top row of R by the vector (1,0,0, . . .). Hence a necessary condition 
for the existence of non-zero solutions to (8.14), other than the phaseshift solution, 
is that the principal minor 

In  figure 10 we have plotted some calculated values of the ratio R'IR" where R" 
denotes the principal minor of R'. It will be seen that this ratio is almost constant 
at  around 0.98 over the whole of the range of interest. In  particular it shows no sign 
whatever of varying significantly from this value in the neighbourhood of E = Emax 
or c = c,,,. The ratios R I R  and R " / R  also were nearly constant and of order 1. 
Lastly it was verified numerically that R I R  was always very small - of order 
at most. 

Thus it appears that the regular Class 1 waves have no asymmetric bifurcation, 
and hence no bifurcation at all, apart from a pure phase shift, throughout the range 
0 < ak < 0.436. 
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